Home >> (Table of Contents) Studies and Indicators >> Technical Studies Reference >> Renko Bar Predictor
Technical Studies Reference
- Technical Studies Reference
- Common Study Inputs (Opens a new page)
- Using Studies (Opens a new page)
Renko Bar Predictor
This study calculates and displays the projected High and Low for Renko Bars. The Renko Bar types are selected via Chart >> Chart Settings >> Main Settings >> Bar Period Type. The Range Bar types are listed below. They can only be used on Intraday Charts.
Let \(O_t^{(R)}\) and \(C_t^{(R)}\) denote the Renko Open and Close, respectively, at Index \(t\).
Let \(s\) denote the Tick Size. Let \(\tau_R\), \(\tau_{TO}\), and \(\tau_{RO}\) denote the Bar Size, Trend Open Offset, and Reversal Open Offset, respectively. These are all controlled via Chart >> Chart Settings >> Main Settings >> Setting. If the Renko Bar type is Renko Bar (in ticks), then \(\tau_{TO} = \tau_{RO} = 0\).
Let the Predicted Renko High and Renko Low at Index \(t\) be denoted as \(H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO})\) and \(L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO})\), respectively. If the Renko Bar type is anything other than Flex Renko Bar Inverse Settings, then the High and Low Predicted Prices are calculated for the last chart bar only as follows.
\(H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} - \tau_{RT} \cdot s + \tau_R \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} - \tau_{RO} \cdot s + 2\tau_R \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .\)\(L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} + \tau_{RO} \cdot s - 2\tau_R \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} + \tau_{TO} \cdot s - \tau_R \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .\)
If the Renko Bar Type is Flex Renko Bar Inverse Settings, then the following formulas are used.
\(H_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} + \tau_{RT} \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} + \tau_{RO} \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .\)\(L_t^{(P)}(\tau_R, \tau_{TO}, \tau_{RO}) = \left\{ \begin{matrix} C_{t - 1}^{(R)} - \tau_{RO} \cdot s & O_{t - 1}^{(R)} < C_{t - 1}^{(R)} \\ C_{t - 1}^{(R)} - \tau_{TO} \cdot s & O_{t - 1}^{(R)} \geq C_{t - 1}^{(R)} \end{matrix}\right .\)
Inputs
- This study has no Inputs.
Spreadsheet
The spreadsheet below contains the formulas for this study in Spreadsheet format. Save this Spreadsheet to the Data Files Folder.
Open it through File >> Open Spreadsheet.
*Last modified Monday, 03rd October, 2022.