Technical Studies Reference
- Technical Studies Reference
- Common Study Inputs (Opens a new page)
- Using Studies (Opens a new page)
Value Chart
Description
This study calculates and displays a Value Chart.
Let \(R\) be a variable denoting the Range modifier and let \(R_t\) be the value of \(R\) at Index \(t\). Let the Length Input be denoted as \(n\). Let the Number of Bars to be used in the Calculations as \(NB\). We then define the following:
- \(\displaystyle{NB =} \left\{ \begin{matrix} n & n < 7 \\ ROUND(n / 5) & n \geq 7 \end{matrix} \right\}\)
- \(HH_t\) is the Highest High in the range of Highs from index \(t\) to index \(t + NB\).
- \(LL_t\) is the Lowest Low in the range of Lows from index \(t\) to index \(t + NB\).
Then \(R\) is computed as follows:
\(\displaystyle{R_t =} \left\{ \begin{matrix} SMA_{TR} & n \leq 7 \\ (R_1 + R_2 + R_3 + R_4 + R_5) / 25 & n > 7 \end{matrix} \right\}\)Where
- \(SMA_{TR}\) is the Simple Moving Average of the True Range.
- \(\displaystyle{R_1 =} \left\{ \begin{matrix} HH_t - LL_t & R_1 \neq 0 \: and \: NB \neq 1 \\ |C_t - C_{t-NB}| & R_1 = 0 \: and \: NB = 1 \end{matrix} \right\}\)
- \(\displaystyle{R_2 =} \left\{ \begin{matrix} HH_{t-NB} - LL_{t-NB} & R_1 \neq 0 \: and \: NB \neq 1 \\ |C_{t-NB} - C_{t-NB*2}| & R_1 = 0 \: and \: NB = 1 \end{matrix} \right\}\)
- \(\displaystyle{R_3 =} \left\{ \begin{matrix} HH_{t-NB*2} - LL_{t-NB*2} & R_1 \neq 0 \: and \: NB \neq 1 \\ |C_{t-NB*2} - C_{t-NB*3}| & R_1 = 0 \: and \: NB = 1 \end{matrix} \right\}\)
- \(\displaystyle{R_4 =} \left\{ \begin{matrix} HH_{t-NB*3} - LL_{t-NB*3} & R_1 \neq 0 \: and \: NB \neq 1 \\ |C_{t-NB*3} - C_{t-NB*4}| & R_1 = 0 \: and \: NB = 1 \end{matrix} \right\}\)
- \(\displaystyle{R_5 =} \left\{ \begin{matrix} HH_{t-NB*4} - LL_{t-NB*4} & R_1 \neq 0 \: and \: NB \neq 1 \\ |C_{t-NB*4} - C_{t-NB*5}| & R_1 = 0 \: and \: NB = 1 \end{matrix} \right\}\)
Then let \(HL^{avg}\) be the moving average of the High/Low Average with the Simple Moving Average length defined as \(n\). \(O^{vc}\) denotes the Value Chart Open, \(H^{vc}\) denotes the Value Chart High, \(L^{vc}\) denotes the Value Chart Low, and \(C^{vc}\) denotes the Value Chart Close. These are defined as follows:
\(O^{vc}_t = (O_t - HL^{avg}_t) / R \)
\(H^{vc}_t = (H_t - HL^{avg}_t) / R \)
\(L^{vc}_t = (L_t - HL^{avg}_t) / R \)
\(C^{vc}_t = (C_t - HL^{avg}_t) / R \)
Inputs
*Last modified Friday, 07th June, 2024.