Processing math: 26%
Login Page - Create Account

Technical Studies Reference


Inertia 2


Description

This study calculates and displays the Inertia 2 study for the Price Data.

Let C be a random variable denoting the Close Price, and let the Standard Deviation Length, Relative Volatility Index Length, and Linear Regression Length Inputs be denoted as nσ, nRVIX, and nLR, respectively. We denote the Relative Volatility Index Up and Relative Volatility Index Down at Index t as RVIX(U)t(nσ) and RVIX(D)t(nσ), respectively, and we compute them in terms of a Standard Deviation for tmax as follows.

\displaystyle{RVIX^{(U)}_t(n_\sigma) = \left\{ \begin{matrix} \sigma_t(C,n_\sigma) & C_t > C_{t - 1} \\ 0 & C_t \leq C_{t - 1} \end{matrix}\right .}

\displaystyle{RVIX^{(D)}_t(n_\sigma) = \left\{ \begin{matrix} 0 & C_t > C_{t - 1} \\ \sigma_t(C,n_\sigma) & C_t \leq C_{t - 1} \end{matrix}\right .}

Next we compute the Smoothed Relative Volatility Index Up and Smoothed Relative Volatility Index Down. The values of these at Index t are denoted as \overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX}) and \overline{RVIX}^{(D)}_t(n_\sigma,n_{RVIX}), respectively. These both have the value 0 for t < \max\{n_\sigma, n_{RVIX}, n_{LR}\}. We compute them for t \geq \max\{n_\sigma, n_{RVIX}, n_{LR}\} as follows.

\displaystyle{\overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX}) = \frac{\overline{RVIX}^{(U)}_{t - 1}(n_\sigma,n_{RVIX})\cdot(n_{RVIX} - 1) + RVIX^{(U)}_t(n_\sigma)}{n_{RVIX}}}

\displaystyle{\overline{RVIX}^{(D)}_t(n_\sigma,n_{RVIX}) = \frac{\overline{RVIX}^{(D)}_{t - 1}(n_\sigma,n_{RVIX})\cdot(n_{RVIX} - 1) + RVIX^{(D)}_t(n_\sigma)}{n_{RVIX}}}

We denote the Relative Volatility Index at Index t as RVIX_t(n_\sigma,n_{RVIX}), and we compute it for t \geq \max\{n_\sigma, n_{RVIX}, n_{LR}\} as follows.

\displaystyle{RVIX_t(n_\sigma,n_{RVIX}) = \left\{ \begin{matrix} 100\cdot\frac{\overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX})}{\overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX}) + \overline{RVIX}^{(D)}_t(n_\sigma,n_{RVIX})} & \overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX}) + \overline{RVIX}^{(D)}_t(n_\sigma,n_{RVIX}) \neq 0 \\ 0 & \overline{RVIX}^{(U)}_t(n_\sigma,n_{RVIX}) + \overline{RVIX}^{(D)}_t(n_\sigma,n_{RVIX}) = 0 \end{matrix}\right .}

Finally, we denote Inertia 2 at Index t as Inertia^{(2)}_t(n_\sigma,n_{RVIX},n_{LR}). It is a Moving Linear Regression of the Relative Volatility Index, and we compute it for t \geq \max\{n_\sigma,n_{RVIX},n_{LR}\} as follows.

Inertia^{(2)}_t(n_\sigma,n_{RVIX},n_{LR}) = MLR_t(RVIX(n_\sigma,n_{RVIX}),n_{LR})

Inputs

Spreadsheet

The spreadsheet below contains the formulas for this study in Spreadsheet format. Save this Spreadsheet to the Data Files Folder.

Open it through File >> Open Spreadsheet.

Inertia_2.288.scss


*Last modified Friday, 24th January, 2025.